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INTRODUCTION
Tendons are viscoelastic materials which undergo stress re-

laxation when held at a constant strain. The most successful
model used to describe the viscoelastic behavior of tendons is the
quasi-linear viscoelastic (QLV) model [1]. In the QLV model, the
relaxation function is assumed to be a separable function of time
and strain. Recently, this assumption has been shown to be in-
valid for tendons [2] thus suggesting the need for new nonlinear
viscoelastic models.

In this study, a transversely isotropic nonlinear viscoelastic
model for the stress relaxation of rat tail tendon fascicles is pre-
sented. The model is formulated within the nonlinear viscoelas-
tic framework set forth by Pipkin and Rogers [3] by considering
recent theoretical developments by Rajagopal and Wineman [4]
for anisotropic materials. The current model represents a de-
parture from current viscoelastic models widely used in biome-
chanics for soft biological tissues because it incorporates a non-
separable relaxation which is a function of the strain invariants
and time. It is validated using stress relaxation data collected at
multiple strain levels from rat tail tendon fascicles and compared
to the predictions of the QLV model.

THEORETICAL DEVELOPMENT
The integral series proposed by Pipkin and Rogers [3] is

used to describe the nonlinear viscoelastic response of the tendon
fascicles. Only the first term of the integral series is considered,
so that the first Piola-Kirchhoff stress tensor, P(t), at time t has
the form
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P(t) =−pF−T(t)+F(t)
(

R[C(t),0]+
∫ t

0

∂R[C(τ), t − τ]

∂ (t − τ)
dτ

)
(1)

where F is the deformation gradient tensor, C = FTF is the right
Cauchy-Green deformation tensor, R[C(τ), t − τ] is the tenso-
rial relaxation function, and p is the Lagrange multiplier that ac-
counts for incompressibility. The term F(t)R[C(t),0] represents
the instantaneous elastic contribution to the total stress at time t.

Rat tail tendon fascicles are assumed to be transversely
isotropic and incompressible. The tensorial relaxation function,
R, is selected to depend only on the fourth invariant of C, I4 = m·
Cm, where m is a unit vector in the reference configuration
which defines the axis of material symmetry. Therefore,

R[I4(τ), t − τ] =
[
c1

(
ec2(I4(τ)−1)−1

)]
[
(1−α )e−(t−τ)β +α

]
(m⊗m) (2)

where c1 and c2 are non-negative constants and α = α(I4(τ))
and β = β (I4(τ)) are functions of I4. In Eq. 2, the expression
in the first square brackets defines the strain stiffening elastic be-
havior of collagenous tissues while the expression in the second
square brackets defines the normalized relaxation behavior.

The fascicles are assumed to undergo a homogeneous iso-
choric axisymmetric deformation and have traction-free bound-
ary conditions on their lateral surface. By using Eqs. (1) and (2)
one can determine the only non-zero component of the first Piola-
Kirchhoff stress tensor which defines the nominal axial stress.
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EXPERIMENTAL METHODS
Tail tendons were excised from two male Sprague Dawley

rats (235 g, 236 g) immediately after death. The fascicles were
stored frozen (-20 ◦C) and before testing they were allowed to
come to room temperature. Images of each fascicle were col-
lected using a microscope (Stemi 2000C, Zeiss) and used to cal-
culate the average cross-sectional area of each specimen assum-
ing a circular cross-section. Black ink was sprayed on the surface
of the fascicles to produce marks with suitable contrast for strain
calculation.

A custom designed micro-testing device was built to per-
form stress relaxation tests [5]. The load was measured using a
8.9 N load cell (LSB 200, Futek) with a resolution of ± 0.02 N.
The motion of the ink marks was tracked using a digital image
correlation method (MATLAB v. 7.10, MathWorks) and the ax-
ial stretch was computed from the measured displacements. The
nominal axial stress was computed by dividing the load by the
measured cross-sectional area.

Each sample was pre-loaded to 0.1 N and then precondi-
tioned at 6 mm/min to 0.4 mm (≈ 0.5%) for 5 cycles followed by
a five minute recovery period. Finally, the sample was stretched
to the desired displacement for relaxation testing corresponding
to 0.25 mm (n = 3), 0.75 mm (n = 8), 1.25 mm (n = 7) or 1.75
mm (n = 6) at 6 mm/min and held for 10 minutes.

RESULTS
Stress-stretch data were collected for 24 rat tail tendon fas-

cicles. These data sets were obtained by axially stretching the
fascicle along its long axis up to the displacement that was held
constant during the stress relaxation experiment. The fascicles
exhibited the typical nonlinear elastic strain-stiffening behavior
of soft collagenous tissues. The stress-stretch data sets were used
to compute the model parameters c1 and c2, which define the in-
stantaneous elastic response of each fascicle.

The applied displacements (0.25 mm - 1.75 mm) produced
strains in the fascicles that varied from 0.3% to 2.8%. The stress
relaxation data collected at the different strain levels were used
to determine the values of α = α(I4) and β = β (I4) in Eq. (2)
at the fixed strain levels. When curve fitting the proposed model
to the stress relaxation data, the values of the parameters c1 and
c2 were fixed to those previously computed by fitting the elastic
stress-stretch data. The model was fit to the experimental re-
laxation data by employing a nonlinear least squares algorithm
implemented in MATLAB. The parameter α was constrained to
be such that 0<α < 1 and β was constrained to be non-negative.

Stress relaxation data sets for five stretch levels are shown
on a log-log plot in Fig. 1 along with model fits and QLV pre-
dictions. The proposed model was able to describe the strain
dependent stress relaxation behavior well (0.80 < R2 < 0.99, for
all 24 data sets). It can be observed that the QLV model can
capture the stress relaxation response only for the first 30s of the
tests but fails to describe the long time relaxation behavior.
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FIGURE 1: EXPERIMENTAL RELAXATION CURVES FOR
RAT TAIL TENDON FASCICLES (POINTS), MODEL FIT
TO DATA (SOLID LINE), AND COMPARISON TO QLV
(DASHED LINE).

DISCUSSION
A constitutive relation has been formulated which can de-

scribe the nonlinear viscoelastic behavior of collagenous tissues
with fibers oriented along a preferred direction, such as ligament
and tendon. The constitutive model is able to capture the coupled
strain and time dependent relaxation behavior with two parame-
ters that describe the elastic behavior and two functions which
describe the viscoelastic behavior. Only a few models exist in
the literature to characterize the coupled strain and time depen-
dent viscoelastic behavior of soft tissues [2]. However, no other
models have been formulated which are three-dimensional, finite
strain, non-separable and consider tissue anisotropy.

ACKNOWLEDGMENT
Supported by Ford Foundation Pre-Doctoral Fellowship,

NSF Graduate Research Fellowship Program and NSF GARDE
Program under Grant No. 0932024.

REFERENCES
[1] Fung, Y. C., 1993. Biomechanics, Mechanical Properites of

Living Tissues, 2nd ed. Springer- Verlag, New York.
[2] Duenwald, S. E., Vanderby, R., and Lakes, R. S., 2010.

“Stress relaxation and recovery in tendon and ligament: Ex-
periment and modeling”. Biorheology, 47(1), pp. 1–14.

[3] Pipkin, A. C., and Rogers, T. G., 1968. “A non-linear integral
representation for viscoelastic behaviour”. Journal of the
Mechanics and Physics of Solids, 16(1), pp. 59–72.

[4] Rajagopal, K. R., and Wineman, A. S., 2009. “Response
of anisotropic nonlinearly viscoelastic solids”. Mathematics
and Mechanics of Solids, 14(5), pp. 490–501.

[5] Webster, M., De Vita, R., Twigg, J., and Socha, J., 2011.
“Mechanical properties of tracheal tubes in the american
cockroach”. Smart Materials and Structures, 20, p. 094017.

2 Copyright c© 2012 by ASME


