Pointwise characterization of the elastic properties of planar soft tissues: Application to ascending thoracic aneruysms

Frances M. Davis1 · Yuanming Luo3 · Stéphane Avril 1 · Ambroise Duprey1,2 · Jia Lu3
1École Nationale Supérieure des Mines Saint-Étienne
2 Hôpital Nord, Cardiovascular Surgery Service, CHU de Saint-Étienne
3 Mechanical Engineering, University of Iowa

Abstract. In this manuscript, we present a combined experimental and computational technique that can identify the heterogeneous elastic properties of planar soft tissues. By combining inverse membrane analysis, digital image correlation, and bulge inflation tests, we are able to identify a tissue's mechanical properties locally. To show how the proposed method could be implemented, we quantified the heterogeneous material properties of a human ascending thoracic aortic aneurysm (ATAA). The ATAA was inflated at a constant rate using a bulge inflation device until it ruptured. Every 3 kPa images were taken using a stereo digital image correlation system. From the images, the three-dimensional displacement of the sample surface was determined. A deforming NURBS mesh was derived from the displacement data, and the local strains were computed. The wall stresses at each pressure increment were determined using inverse membrane analysis. The local material properties of the ATAA were then identified using the pointwise stress and strain data. To show that it is necessary to consider the heterogeneous distribution of the mechanical properties in the ATAA, three different forward finite element simulations using pointwise, elementwise, and homogeneous material properties were compared. The forward finite element predictions revealed that heterogeneous nature of the ATAA must be accounted for to accurately reproduce the stress-strain response.

Keywords: bulge inflation test, heterogeneous material properties, digital image correlation, inverse elastostatic analysis, thoracic aneurysm.